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Abstract 
The relationship between the logarithmic convex sequences of real numbers and their associated 
functions is investigated. A convex function N is constructed starting from a logarithmic sequence and 
then a function M~  is associated to N. We shall prove that these two functions are related through a 
Clairaut equation.  
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One knows that a function R→= )),((: baIf  is analytic if and only if for every compact set 
K contained in I there exist constants )(),( KAAKCC ==  so that 

 KxpCAxf pp ∈∀≤ )(,!)()( .  

By applying Stirling formula one can see that a function is analytic if and only if for every 
compact set K contained in I there exist constants )(),( KAAKCC ==  so that 

 KxpCAxf ppp ∈∀≤ )(,)()( .  

Gevrey introduced the following classes of functions: a function R→= )),((: baIf  belongs 
to a Gevrey class of order 1>γ  if for every compact set K contained in I there exist constants 

)(),( KAAKCC ==  so that 

 
KxpCAxf pp ∈∀≤ )(,)!()()( γ

  
or, equivalently, if and only if for every compact set K contained in I there exist constants 

)(),( KAAKCC ==  so that 

 
KxpCAxf ppp ∈∀≤ )(,)()( γ

.  

An essential difference between the space of analytic functions and Gevrey classes is that there 
is no analytic function with compact support, but there are enough Gevrey functions of order r 
with compact support. This allowed to develop the theory of Gevrey ultradistributions, 
following Schwartz’s approach. Even more general spaces of functions (Denjoy-Carleman 
spaces) can be obtained if in the inequalities defining the Gevrey classes one replaces the 
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sequence p
pp )( γ  with an arbitrary sequence of real numbers ppM )( . Ultradistributions 

corresponding to such classes of functions were studied in [3], [7]. Subclasses of the Schwartz 
space of rapidly decreasing functions (S-spaces) can also be obtained by using sequences 

ppM )(  of real numbers to control the behavior of the function and of its derivatives at infinity 
([2], [7]). S-classes are appropriate for the study of parabolic equations and, in particular, of the 
heat equation [2]. Mandelbrojt [4] (in general) and Roumieu [7] (in the context of the theory of 
S functions) emphasized the importance of the function associated to a sequence of numbers.  

In order to have good properties for the Denjoy-Carleman spaces of functions some minimal 
conditions on the sequences ppM )(  have to be imposed. In what follows we shall suppose that 

the sequence { }
ppM is logarithmic convex, i.e. 

 .1)(,11
2 ≥∀≤ +− pMMM ppp  (1) 

Without restricting the generality, we may suppose that M0 = 1. Therefore, if { }
ppM is 

logarithmic convex, then  

 .0,)(,0 ≥∀=≤ ++ qpMMMMM qpqpqp   

We shall also suppose that  

 0lim
1

=
+

∞→
p

p

p M
M

. (2) 

For a logarithmic convex sequence { }
ppM  we can define its associated function through the 

formula 

 0)(),lnln(sup)(
0

>∀−=
≥

rMrprM p
p

. (3) 

It is well known that M is nondecreasing, M(r) = 0 for r < M1 and that 

 ))(ln(suplog
0

rMrpM
r

p −=
>

.  

In this paper we shall investigate the relationship between logarithimic convex sequences and 
their associated functions. More precisely, we shall construct a convex function N starting from 
a logarithmic convex sequence and we shall associate to N another function M~  through a 
formula similar to formula (2). We shall see that these two functions are related through an 
implicit differential equation (a Clairaut equation) and we shall compare M~  with M. We shall 
also put into evidence the link between M~  and the Legendre transform. Finally, we shall 
consider the case of Gevrey classes { }

ppM = p
pp )( γ . 

Proposition 1. Let { }
ppM  be a sequence of real numbers as above and pp MN ln= . Then 

there exists a continuously differentiable convex function ),0[),0[: ∞→∞N  so that 
0)0(,)(,)( =∈∀= NpNpN p N*  and ∞→)(' sN when ∞→s . 

Proof. Let us first remark that  

 *N∈∀−≤−≤ +− pNNNN pppp )(,0 11  
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and that  

 ∞→− −1pp NN  when ∞→p .  

In order to prove that a function N with the required properties exists, it is sufficient to construct 
for any p, any pp NNb −≤ +1  and some ],[ 121 +++ −−∈ pppp NNNNc  (a choice for c will be 
made later) a function f having the following properties:  

 

cpf
bpf

Npf
Npf

p

p

=+
=

=+

=

+

)1('
,)('

,)1(
,)(

1  

and f' is increasing. If we put g = f', one can see that it is sufficient to determine g so that 

(a) cpgbpg =+= )1(,)( , 
(b) g is increasing, 

(c) pp

p

p

NNssg −= +

+

∫ 1

1

d)( . 

(If such a function g is determined, we can take ]1,[)(,d)()( +∈∀+= ∫ ppsttgNsf
s

p
p ). 

We can take  g  of the form γβα ++= sssg 2)( . Conditions (a) and (c) are fulfilled if and 
only if  

 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−=+++++

=++++
=++

+ pp NNppp

cpp
bpp

1
2

2

2

)
2
1()

3
1(

)1()1(

γβα

γβα
γβα

.  

Therefore we must have  

 )(3 1 pp NNc +−= +α   

and  

 ))(12(3 1 pp NNcpbc +−+−−= +β .  

In order to have condition (b) also satisfied, we have to select c so that   

 
2

)(3 1 bNN
c pp −−
≤ + . 

This is always possible, since pp
pp NN

bNN
−≥

−−
+

+
1

1

2
)(3

 for any p. 

Remark. The space of functions defined by using some sequence ppM )(  remains the same if 
we change a finite number of terms of the sequence. Therefore when working with such spaces, 
one can always assume that 101 MM ≤= . From the logarithmic convexity, it will follow that 
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the sequence ppM )(  is increasing. In this case, the construction from the proof of Proposition 1 
will give an increasing function N. 

Sometimes it is useful to replace logarithmic convex sequences with sequences that are strictly 
logarithmic convex, i.e sequences which satisfy 

 .1)(,11
2 ≥∀< +− pMMM ppp  (1’) 

The following remark and Proposition 2 from below will show that there is no loss in generality 
in assuming that the sequences we are working with are strictly logarithmic convex. 

Definition 1. Two sequences of real numbers ppM )(  and ppM )'(  are said to be equivalent if 
there exist two positive constants c and C so that 

 *N∈∀≤≤ pMCMMc p
p

pp
p )(,' .  

Remark. The spaces of functions defined by equivalent sequences are equal. 

Proposition 2. If ppM )(  is a logarithmic convex sequence which satisfies (2), then there exists 

a sequence ppM )'(  which is strictly logarithmic convex and is equivalent with ppM )( . 

Proof. Suppose npp +11,  satisfy  

 11
2

111 +−< ppp MMM , 11
2

111 ++−++ < npnpnp MMM  

and  

 }1,...,1{)(, 1111
2 −++∈∀= −+ npppMMM ppp .  

(Due to condition (2), we can not have an infinite sequence of consecutive terms Mp so that 

11
2

−+= ppp MMM .) Let us put, as above pp MN ln= . Then  

 }1,...,1{)(, 1111 −++∈∀−=− +− npppNNNN pppp .   

Suppose we determined pN '  for 1pp ≤  so that 

 
1111

''',)(,'''' 11111 pppppppp NNNNppNNNN −<−<∀−<− +−+−   

and  

 1)(,e' ppNNN p
p

pp ≤∀≤≤ .  

It will be sufficient to determine pN '  for },...,1{ 11 nppp ++∈  such that 

 },1,...,1{)(,'''' 1111 −++∈∀−<− +− npppNNNN pppp  (4) 

 npnpnpnp NNNN +++−++ −<−
111111

'''  (5) 
and 

 },...,1{)(,' 11 npppNpNN ppp ++∈∀+≤≤ . (6) 
We shall use the following notations:  

 12 11 ++ −= pp NNa ,  

 npnp NNb +++ −=
11 1 ,  
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 ),min( nabd −= .  

We put  

 },...,1{)(,
2

)1()1(' 2

2

111
njd

n
jjaNN pjp ∈∀⋅
−

+−+= ++ .  

Then, clearly, (4) is fulfilled. Also, one can easily notice that (5) is true if 
0)(,0322 >∀>+− nnn . Since this last inequality is true, we have also (5). Finally, the first 

inequalities from (6) are evident, from the construction of pN '  and  

 jpjd
n

jNN jpjp +≤≤⋅
−

=− ++ 12

2

2
)1('

11
.  

The proof has finished.  

Starting from now we shall assume that the sequence ppM )(  is strictly logarithmic convex. Let 
us remark that in this case the function N from Proposition 1 can also be supposed to be a 
strictly convex function. So in what follows we shall always assume that ),0[),0[: ∞→∞N  is 
a continuously differentiable strictly convex function so that 

 0)0(,)(,)( =∈∀= NpNpN p N*    

and ∞→)(' sN when ∞→s . We define a function M~  through a formula similar to formula 
(3) 

 0)()),(ln(sup)(~),,0[),0(:~
0

>∀−=∞→∞
≥

rsNrsrMM
s

. (3’) 

Proposition 3. The function M~  is correctly defined,  

 0)(,ln)()(~)( >∀+≤≤ rrrMrMrM   (7) 

and 0)(~ >rM  if and only if )('inf)(infln
00

sN
s
sNr

ss >>
=> . 

Proof. The last assertion is obvious from the properties of N. Choose r so that )('infln
0

sNr
s>

> . 

We define a function  
 0)(),(ln)(,),0[: ≥∀−=→∞ ssNrssff rr R .  

Then )('ln)(' sNrsf r −= . Since N' is strictly increasing and ∞→)(' sN when ∞→s , 
there exists a unique point s(r) so that 0))((' =rsf r . We have  

 ))((ln)())(()(~ rsNrrsrsfrM r −== .  

The first inequality from (7) is clearly a consequence of the definitions of M and M~ . Given p, 
so that ]1,[)( +∈ pprs  one obtains 

 =−−−≤− ))(ln())((ln)()()(~ pNrprsNrrsrMrM  
 rrprspNrsNrprs lnln))(())())(((ln))(( ≤−≤−−−= .  
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Lemma 1. If ),,0[),[: ∞→∞af  is a continuous, strictly increasing and surjective function 

and if ∫ ≥∀= −
t

ss(s)ftF
0

1 0)(,d)( , then the function  

 ))(()()(,),[: sfFssfsGaG −=→∞ R  

is increasing. 

Proof. For 12 ss >  we have  

 ∫ −−−=−
)(

)(

1
112212

2

1

d)()()()()(
sf

sf

ssfsfssfssGsG .  

If we put )(),( 1122 sftsft ==  we will notice that 

 ∫ −−− −−=−
2

1

d)()()()()( 1
1

1
12

1
212

t

t

ssftfttftsGsG .  

The mean value property implies that there exists some t in the interval ],[ 21 tt  so that 

)()(d)( 1
12

1
2

1

tfttssf
t

t

−− −=∫ . Therefore  

 =−−−=− −−− )()()()()()( 1
121

1
12

1
212 tftttfttftsGsG   

 0)()())()(()()())()(( 1
121

11
1

1
12

1
2

1
2 >−−−+−+−= −−−−−− tftttftfttftttftft .  

The proof of the lemma has finished. 

Proposition 4. The function M~  is strictly increasing. 

Proof. It is suficient to prove that exp~
oM  is increasing. But  

 )()'()()'()e(~ 11 tNNtNtM t −− −= o .  

We can apply Lemma 1 with f = (N')-1. 

Proposition 5. The function N satisfy the differential equation: 

 xppM −= τ)exp)(~( o ,  
where, as usually, we denoted with p the derivative of the dependent variable x with respect to 
the independent variable τ. 

Proof. We saw that we have ))((ln)()(~ rsNrrsrM −=  where )(ln)'()( 1 rNrs −= . If we 
make the change of variables tr =ln , we obtain the equality 

 )()'()()'()e(~ 11 tNNtNtM t −− −= o .  

We obtain our equation if we make a second change of variables: )()'( 1 tN −=τ . 

We shall investigate now the relation between M~  and the Legendre transform. Let us recall 
that if L is a convex function defined on the whole real axis so that  

 ∞=
∞→ s

sL
s

)(lim ,  
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then one can define its Legendre transform through the formula ))((sup)(* sLsttL
Rs

−=
∈

. 

The Legendre transform L* is also a superlinear convex function and (L*)* = L. 

In our case, the function N is a convex function defined only on the positive semiaxis. But if we 
assume that N is increasing (we saw that we can always assume this), then we can extend N by 
parity to a convex function N~  defined on the whole real axis. More than that, due to the fact 

that ∞→)(' sN when ∞→s , we see that  ∞=
∞→ s

sN
s

)(~
lim . 

Therefore we can define the Legendre transform of N~ . We can easily see that 
 R∈∀= ttNtM )(),(*~)exp)(~( o .  

Hence )(ln*~)(~ rNrM =  for ln r > 0. We could use this relation to prove that M~  is correctly 

defined. But the differentiability of N allowed us to give a more precise expression for M~  and 
to obtain the result from Proposition 5. 

As a consequence of these remarks, we have  

 ∞=
∞→ r

rM
r ln

)(~
lim ,  

and, according to (7) M~  and M have the same order of magnitude i.e. 0)( >∃ C  so that  

 0)(),()(~)( >∀≤≤ rrCMrMrM .  

(We could also deduce the inequality from above using the well known fact that 

∞=
∞→ r

rM
r ln

)(lim .) 

Let us consider the case { }
ppM = p

pp )( γ . In this situation ppN p lnγ=  and we can take 

sssN ln)( γ= . Therefore γγ −−= srsf r lnln)('  and γ/11e)( rrs −= . A direct computation 

shows that γγ /11e)(~ rrM −= . The upper estimate obtained in Proposition 3 can be improved. 
Indeed, 

 =−−− ))(ln())((ln)( pNrprsNrrs ≤−−− )lnln()(ln)(ln)( pprprsrsrrs γγ  
 =−−−≤ ))(lnln()(ln)(ln)( rsprprsrsrrs γγ   
 =−−−−= − )elnln)()((ln))(( 1 rprsrprs γγ  
 γγ ≤−= ))(( prs . 
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Şiruri de numere şi funcţiile lor asociate 

Rezumat 
Este investigată legătura dintre şirurile de numere logaritmic convexe şi funcţiile lor asociate. Se 
construieşte o funcţie convexă N pornind de la un şir logaritmic, după care se asociază lui N o funcţie 
M~ . Vom demonstra că aceste două funcţii sunt dependente printr-o ecuaţie Clairaut. 

 


